Occupational Asthma Reference

Ockajová A, Kucerka M, Kminiak R, Krišták L, Igaz R, Réh R., Occupational Exposure to Dust Produced when Milling Thermally Modified Wood., Int J Environ Res Public Health, 2020;17:1478,10.3390/ijerph17051478
(Plain text: Ockajova A, Kucerka M, Kminiak R, Kristak L, Igaz R, Reh R., Occupational Exposure to Dust Produced when Milling Thermally Modified Wood., Int J Environ Res Public Health)

Keywords: wood, air measurements, oak, spruce, Slovakia

Known Authors

If you would like to become a known author and have your picture displayed along with your papers then please get in touch from the contact page. Known authors can choose to receive emails when their papers receive comments.

Abstract

During production, thermally modified wood is processed using the same machining operations as unmodified wood. Machining wood is always accompanied with the creation of dust particles. The smaller they become, the more hazardous they are. Employees are exposed to a greater health hazard when machining thermally modified wood because a considerable amount of fine dust is produced under the same processing conditions than in the case of unmodified wood. The International Agency for Research on Cancer (IARC) states that wood dust causes cancer of the nasal cavity and paranasal sinuses and of the nasopharynx. Wood dust is also associated with toxic effects, irritation of the eyes, nose and throat, dermatitis, and respiratory system effects which include decreased lung capacity, chronic obstructive pulmonary disease, asthma and allergic reactions. In our research, granular composition of particles resulting from the process of longitudinal milling of heat-treated oak and spruce wood under variable conditions (i.e., the temperature of modification of 160, 180, 200 and 220 °C and feed rate of 6, 10 and 15 m.min-1) are presented in the paper. Sieve analysis was used to determine the granular composition of particles. An increase in fine particle fraction when the temperature of modification rises was confirmed by the research. This can be due to the lower strength of thermally modified wood. Moreover, a different effect of the temperature modification on granularity due to the tree species was observed. In the case of oak wood, changes occurred at a temperature of 160 °C and in the case of spruce wood, changes occurred at the temperatures of 200 and 220 °C. At the temperatures of modification of 200 and 220 °C, the dust fraction (i.e., that occurred in the mesh sieves, particles with the size = 0.08 mm) ranged from 2.99% (oak wood, feed rate of 10 m.min-1) to 8.07% (spruce wood, feed rate of 6 m.min-1). Such particles might have a harmful effect on employee health in wood-processing facilities.

Plain text: During production, thermally modified wood is processed using the same machining operations as unmodified wood. Machining wood is always accompanied with the creation of dust particles. The smaller they become, the more hazardous they are. Employees are exposed to a greater health hazard when machining thermally modified wood because a considerable amount of fine dust is produced under the same processing conditions than in the case of unmodified wood. The International Agency for Research on Cancer (IARC) states that wood dust causes cancer of the nasal cavity and paranasal sinuses and of the nasopharynx. Wood dust is also associated with toxic effects, irritation of the eyes, nose and throat, dermatitis, and respiratory system effects which include decreased lung capacity, chronic obstructive pulmonary disease, asthma and allergic reactions. In our research, granular composition of particles resulting from the process of longitudinal milling of heat-treated oak and spruce wood under variable conditions (i.e., the temperature of modification of 160, 180, 200 and 220 oC and feed rate of 6, 10 and 15 m.min-1) are presented in the paper. Sieve analysis was used to determine the granular composition of particles. An increase in fine particle fraction when the temperature of modification rises was confirmed by the research. This can be due to the lower strength of thermally modified wood. Moreover, a different effect of the temperature modification on granularity due to the tree species was observed. In the case of oak wood, changes occurred at a temperature of 160 oC and in the case of spruce wood, changes occurred at the temperatures of 200 and 220 oC. At the temperatures of modification of 200 and 220 oC, the dust fraction (i.e., that occurred in the mesh sieves, particles with the size = 0.08 mm) ranged from 2.99% (oak wood, feed rate of 10 m.min-1) to 8.07% (spruce wood, feed rate of 6 m.min-1). Such particles might have a harmful effect on employee health in wood-processing facilities.

Full Text

Full text of this reference not available

Please Log In or Register to add the full text to this reference

Associated Questions

There are no associations for this paper.

Please Log In or Register to put forward this reference as evidence to a question.

Comments

Please sign in or register to add your thoughts.


Oasys and occupational asthma smoke logo